Web Scraping avec Claude en 2025

Apprenez à utiliser Claude AI pour automatiser le web scraping et extraire des données structurées sans effort avec Python.
22 min de lecture
web scraping with claude blog image

Claude, un grand modèle de langage (LLM) d’Anthropic, est l’un des modèles d’IA les plus utilisés dans le monde. Une fois que vous aurez appris à récupérer des sites web, vous passerez le plus clair de votre temps à écrire des analyseurs syntaxiques.

Avec les modèles d’IA modernes, nous pouvons en fait automatiser ce processus. Au lieu de passer des heures à analyser un site difficile, un LLM peut le faire pour vous en moins de cinq minutes.

Nous avons déjà publié d’autres tutoriels sur l’utilisation de l’IA pour générer du code rapidement, mais ici, nous allons intégrer Claude dans notre environnement Python. Suivez-nous et automatisez la partie la plus fastidieuse de votre travail.

Création d’un compte anthropique

Pour accéder à l’API Claude, vous devez créer un compte auprès de Anthropic. Vous pouvez le faire en utilisant votre email ou votre compte Google.

Enregistrement anthropique

Une fois que vous avez un compte, cliquez sur l’onglet “Clés API” et vous pourrez créer une clé API. Une fois que vous l’avez créée, gardez cette clé précieusement. Vous ne pourrez pas la consulter une deuxième fois.

Tableau de bord de l'API Anthropic

Conservez cette clé dans un endroit sûr, vous ne pourrez pas utiliser l’API sans elle.

Faire une demande de base

Nous ferons notre première demande à Quotes to Scrape. Ce site ne change pas beaucoup et il est conçu pour le scraping éducatif. Cela nous donne une page statique pour tester les réponses de Claude.

Tout d’abord, nous devons installer l’anthropique.

pip install anthropic

La mise en place d’une instance client est assez simple.

#set up the client
client = anthropic.Anthropic(
    api_key=ANTHROPIC_API_KEY,
)

Voici la fonction par laquelle nous introduisons tout dans Claude.

#takes in http response and sends its text to claude for processing
def extract_with_claude(response, token_limit=200000, max_tokens_per_chunk=1024):
    message = client.messages.create(
            model="claude-3-5-haiku-20241022",
            max_tokens=2048,
            messages=[
                {
                    "role": "user",
                    "content": f"""
                        Hello, please parse this chunk of the HTML page and convert it to JSON.
                        Make sure to strip newlines, remove escape characters, and whitespace:
                        {response.text}
                    """
                }
            ]
        )
    text = message.to_dict()["content"][0]["text"]
    return text
  • modèle: Le modèle que nous souhaitons utiliser. Nous utilisons claude-3-5-haiku-20241022.
  • max_tokens représente le nombre maximum de jetons que Claude doit utiliser pour la réponse.
  • Par défaut, l’API renvoie un objet Message. Nous utilisons to_dict() pour le convertir en paires clé-valeur faciles à utiliser.
import re
import requests
import anthropic
import json

ANTHROPIC_API_KEY = "YOUR-ANTHROPIC-API-KEY"


#set up the client
client = anthropic.Anthropic(
    api_key=ANTHROPIC_API_KEY,
)

#takes in http response and sends its text to claude for processing
def extract_with_claude(response, token_limit=200000, max_tokens_per_chunk=1024):
    message = client.messages.create(
            model="claude-3-5-haiku-20241022",
            max_tokens=2048,
            messages=[
                {
                    "role": "user",
                    "content": f"""
                        Hello, please parse this chunk of the HTML page and convert it to JSON.
                        Make sure to strip newlines, remove escape characters, and whitespace:
                        {response.text}
                    """
                }
            ]
        )
    text = message.to_dict()["content"][0]["text"]
    return text




if __name__ == "__main__":
    TARGET_URL = "https://quotes.toscrape.com"
    response = requests.get(TARGET_URL)
    
    print(extract_with_claude(response))

Comprendre les réponses de Claude

Comme nous l’avons mentionné plus haut, Claude renvoie par défaut un objet Message. La méthode to_dict() rend notre réponse un peu plus facile à intégrer dans notre environnement Python. Cependant, elle n’est toujours pas prête à être utilisée. Jetez un coup d’oeil à la réponse ci-dessous.

I'll help you parse this HTML into a JSON format. I'll focus on extracting the quotes, their authors, and tags. Here's the resulting JSON:

```json
{
  "quotes": [
    {
      "text": "The world as we have created it is a process of our thinking. It cannot be changed without changing our thinking.",
      "author": "Albert Einstein",
      "tags": ["change", "deep-thoughts", "thinking", "world"]
    },
    {
      "text": "It is our choices, Harry, that show what we truly are, far more than our abilities.",
      "author": "J.K. Rowling",
      "tags": ["abilities", "choices"]
    },
    {
      "text": "There are only two ways to live your life. One is as though nothing is a miracle. The other is as though everything is a miracle.",
      "author": "Albert Einstein",
      "tags": ["inspirational", "life", "live", "miracle", "miracles"]
    },
    {
      "text": "The person, be it gentleman or lady, who has not pleasure in a good novel, must be intolerably stupid.",
      "author": "Jane Austen",
      "tags": ["aliteracy", "books", "classic", "humor"]
    },
    {
      "text": "Imperfection is beauty, madness is genius and it's better to be absolutely ridiculous than absolutely boring.",
      "author": "Marilyn Monroe",
      "tags": ["be-yourself", "inspirational"]
    },
    {
      "text": "Try not to become a man of success. Rather become a man of value.",
      "author": "Albert Einstein",
      "tags": ["adulthood", "success", "value"]
    },
    {
      "text": "It is better to be hated for what you are than to be loved for what you are not.",
      "author": "André Gide",
      "tags": ["life", "love"]
    },
    {
      "text": "I have not failed. I've just found 10,000 ways that won't work.",
      "author": "Thomas A. Edison",
      "tags": ["edison", "failure", "inspirational", "paraphrased"]
    },
    {
      "text": "A woman is like a tea bag; you never know how strong it is until it's in hot water.",
      "author": "Eleanor Roosevelt",
      "tags": ["misattributed-eleanor-roosevelt"]
    },
    {
      "text": "A day without sunshine is like, you know, night.",
      "author": "Steve Martin",
      "tags": ["humor", "obvious", "simile"]
    }
  ],
  "top_tags": [
    {"tag": "love", "size": 28},
    {"tag": "inspirational", "size": 26},
    {"tag": "life", "size": 26},
    {"tag": "humor", "size": 24},
    {"tag": "books", "size": 22},
    {"tag": "reading", "size": 14},
    {"tag": "friendship", "size": 10},
    {"tag": "friends", "size": 8},
    {"tag": "truth", "size": 8},
    {"tag": "simile", "size": 6}
  ]
}
```

I've extracted:
1. The quotes, their text, authors, and associated tags
2. The top tags with their relative sizes

The JSON is clean, without newlines or escape characters, and follows a clear structure. Would you like me to modify the JSON in any way?

Nous recevons le JSON que nous voulons, mais il est intégré dans une chaîne plus large. Nous devons extraire les données de Claude du texte.

Extraction des données de la réponse

Le JSON est intégré dans des backticks, “`, tout comme un bloc de code markdown. Pour obtenir notre réponse, nous allons utiliser une expression rationnelle pour trouver le début et la fin du JSON.

def pull_json_data(claude_text):
    json_match = re.search(r"```json\n(.*?)\n```", claude_text, re.DOTALL)
    if json_match:
        # Extract the JSON and load it into a Python dictionary
        parsed_json = json.loads(json_match.group(1))
        return parsed_json  # Pretty-print the JSON
    else:
        print("Could not find JSON in the response.")

Voici un exemple de code complet qui imprime uniquement les données extraites de la page.

import re
import requests
import anthropic
import json

ANTHROPIC_API_KEY = "YOUR-ANTHROPIC-API-KEY"


# Set up the Claude client
client = anthropic.Anthropic(
    api_key=ANTHROPIC_API_KEY,
)


def pull_json_data(claude_text):
    json_match = re.search(r"```json\n(.*?)\n```", claude_text, re.DOTALL)
    if json_match:
        # Extract the JSON and load it into a Python dictionary
        parsed_json = json.loads(json_match.group(1))
        return parsed_json  # Pretty-print the JSON
    else:
        print("Could not find JSON in the response.")


def extract_with_claude(response, token_limit=200000, max_tokens_per_chunk=1024):
    message = client.messages.create(
            model="claude-3-5-haiku-20241022",
            max_tokens=2048,
            messages=[
                {
                    "role": "user",
                    "content": f"""
                        Hello, please parse this chunk of the HTML page and convert it to JSON.
                        Make sure to strip newlines, remove escape characters, and whitespace:
                        {response.text}
                    """
                }
            ]
        )
    text = message.to_dict()["content"][0]["text"]
    return pull_json_data(text)




if __name__ == "__main__":
    TARGET_URL = "https://quotes.toscrape.com"
    response = requests.get(TARGET_URL)
    
    print(extract_with_claude(response))

Voici les données extraites de la conversation de Claude.

{'quotes': [{'text': 'The world as we have created it is a process of our thinking. It cannot be changed without changing our thinking.', 'author': 'Albert Einstein', 'tags': ['change', 'deep-thoughts', 'thinking', 'world']}, {'text': 'It is our choices, Harry, that show what we truly are, far more than our abilities.', 'author': 'J.K. Rowling', 'tags': ['abilities', 'choices']}, {'text': 'There are only two ways to live your life. One is as though nothing is a miracle. The other is as though everything is a miracle.', 'author': 'Albert Einstein', 'tags': ['inspirational', 'life', 'live', 'miracle', 'miracles']}, {'text': 'The person, be it gentleman or lady, who has not pleasure in a good novel, must be intolerably stupid.', 'author': 'Jane Austen', 'tags': ['aliteracy', 'books', 'classic', 'humor']}, {'text': "Imperfection is beauty, madness is genius and it's better to be absolutely ridiculous than absolutely boring.", 'author': 'Marilyn Monroe', 'tags': ['be-yourself', 'inspirational']}, {'text': 'Try not to become a man of success. Rather become a man of value.', 'author': 'Albert Einstein', 'tags': ['adulthood', 'success', 'value']}, {'text': 'It is better to be hated for what you are than to be loved for what you are not.', 'author': 'André Gide', 'tags': ['life', 'love']}, {'text': "I have not failed. I've just found 10,000 ways that won't work.", 'author': 'Thomas A. Edison', 'tags': ['edison', 'failure', 'inspirational', 'paraphrased']}, {'text': "A woman is like a tea bag; you never know how strong it is until it's in hot water.", 'author': 'Eleanor Roosevelt', 'tags': ['misattributed-eleanor-roosevelt']}, {'text': 'A day without sunshine is like, you know, night.', 'author': 'Steve Martin', 'tags': ['humor', 'obvious', 'simile']}], 'topTags': ['love', 'inspirational', 'life', 'humor', 'books', 'reading', 'friendship', 'friends', 'truth', 'simile']}

Traiter les grandes pages

Lorsque nous introduisons une page volumineuse dans Claude, nous nous heurtons à des contraintes liées aux jetons. Claude autorise une limite maximale de 200 000 jetons. Pour que Claude puisse traiter des données plus volumineuses, nous devons diviser nos données en morceaux. Ensuite, Claude peut traiter chaque morceau individuellement.

def chunk_text(text, max_tokens):
    """Split text into sequential chunks based on token limit."""
    chunks = []
    while text:
        # Estimate tokens for the current chunk size
        current_chunk = text[:max_tokens * 4]  # Rough estimate: 1 token ≈ 4 characters
        chunks.append(current_chunk)
        text = text[len(current_chunk):]  # Move to the next chunk
    return chunks

Le code ci-dessus nous donne un algorithme primitif de découpage en morceaux avec lequel travailler. Chaque morceau sera envoyé individuellement à Claude pour être traité.

Claude avec Web Unlocker et Proxies résidentiels

Dans l’exemple suivant, nous intégrerons notre scraper infusé par l’IA aux proxies de Bright Data pour contourner le système de blocage d’Amazon. Cela représente beaucoup moins de travail que de scraper manuellement Amazon. Vous pouvez utiliser le scraper ci-dessous avec Web Unlocker ou nos proxies résidentiels.

import re
import requests
from bs4 import BeautifulSoup
import anthropic
import json

ANTHROPIC_API_KEY = "YOUR-ANTHROPIC-API-KEY"

client = anthropic.Anthropic(
    api_key=ANTHROPIC_API_KEY,
)

def estimate_tokens(text):
    # Rough estimate: 1 token ≈ 4 characters
    return len(text) // 4


def clean_html(html):
    soup = BeautifulSoup(html, "html.parser")
    # Remove script and style elements
    for script_or_style in soup(["script", "style"]):
        script_or_style.decompose()

    # Get the text content only
    return soup.get_text(separator=" ", strip=True)

def pull_json_data(claude_text):
    json_match = re.search(r"```json\n(.*?)\n```", claude_text, re.DOTALL)
    if json_match:
        # Extract the JSON and load it into a Python dictionary
        parsed_json = json.loads(json_match.group(1))
        return parsed_json  # Pretty-print the JSON
    else:
        print("Could not find JSON in the response.")

def chunk_text(text, max_tokens):
    """Split text into sequential chunks based on token limit."""
    chunks = []
    while text:
        # Estimate tokens for the current chunk size
        current_chunk = text[:max_tokens * 4]  # Rough estimate: 1 token ≈ 4 characters
        chunks.append(current_chunk)
        text = text[len(current_chunk):]  # Move to the next chunk
    return chunks

def extract_with_claude(response, token_limit=200000, max_tokens_per_chunk=1024):
    """Process HTML response with Claude by dynamically chunking the text."""
    # Estimate tokens and preprocess if necessary
    token_estimate = estimate_tokens(response.text)
    page_to_parse = response.text

    # Clean HTML if it exceeds the token limit
    if token_estimate > token_limit:
        page_to_parse = clean_html(page_to_parse)

    # Chunk the cleaned text
    chunks = chunk_text(page_to_parse, max_tokens_per_chunk)
    print(f"Chunks to process: {len(chunks)}")

    # Process each chunk
    results = []
    for i, chunk in enumerate(chunks):
        print(f"Processing chunk {i + 1}/{len(chunks)}...")
        message = client.messages.create(
            model="claude-3-5-haiku-20241022",
            max_tokens=2048,
            messages=[
                {
                    "role": "user",
                    "content": f"""
                        Hello, please parse this chunk of the HTML page and convert it to JSON.
                        Make sure to strip newlines, remove escape characters, and whitespace:
                        {chunk}
                    """
                }
            ]
        )
        text = message.to_dict()["content"][0]["text"]
        try:
            parsed_json = pull_json_data(text)  # Extract JSON
            results.append(parsed_json)
        except Exception as e:
            print(f"Error processing chunk {i + 1}: {e}")
    return results




if __name__ == "__main__":
    TARGET_URL = "https://www.amazon.com/s?k=laptops"
    PROXY_URL = "http://brd-customer-<YOUR-USERNAME>-zone-<YOUR-ZONE-NAME>:<YOUR-PASSWORD>@brd.superproxy.io:33335"
    proxies = {
        "http": PROXY_URL,
        "https": PROXY_URL
    }
    response = requests.get(TARGET_URL, proxies=proxies, verify="brd.crt")
    json_data = extract_with_claude(response)
    
    with open("output.json", "w") as file:
        try:
            json.dump(json_data, file, indent=4)
        except:
            print("Failed to save JSON data")

Cet exemple est un peu plus raffiné que notre racleur de citations.

  • Amazon nous donne des pages de réponses massives. Nous utilisons notre algorithme de découpage pour diviser la page.
  • Nous transmettons chaque morceau à Claude par l’intermédiaire d’un client API pour qu’il le traite.
  • Nous extrayons le JSON de chaque réponse et l’ajoutons à nos résultats. Lorsque l’analyse est terminée, nous renvoyons ces résultats.
  • Après le balayage, nous écrivons les résultats dans un fichier JSON.

Voici la sortie du terminal. La page a été découpée en six morceaux pour être traitée par Claude.

Chunks to process: 6
Processing chunk 1/6...
Processing chunk 2/6...
Processing chunk 3/6...
Processing chunk 4/6...
Processing chunk 5/6...
Processing chunk 6/6...

Vous pouvez consulter les données JSON extraites ci-dessous.

[
    {
        "page_title": "Amazon.com: laptops",
        "search_context": {
            "total_results": "over 100,000",
            "sort_options": [
                "Featured",
                "Price: Low to High",
                "Price: High to Low",
                "Avg. Customer Review",
                "Newest Arrivals",
                "Best Sellers"
            ]
        },
        "featured_products": [
            {
                "brand": "Apple",
                "model": "2024 MacBook Pro",
                "variants": [
                    {
                        "color": "Silver",
                        "chip": "M4 with 10-core CPU and 10-core GPU",
                        "display": "14.2-inch Liquid Retina XDR",
                        "memory": "16GB Unified Memory",
                        "storage": "512GB SSD",
                        "rating": 4.8,
                        "reviews": 341
                    },
                    {
                        "color": "Space Black",
                        "chip": "M4 with 10-core CPU and 10-core GPU",
                        "display": "14.2-inch Liquid Retina XDR",
                        "memory": "16GB Unified Memory",
                        "storage": "512GB SSD",
                        "rating": 4.8,
                        "reviews": 341
                    },
                    {
                        "color": "Silver",
                        "chip": "M4 with 10-core CPU and 10-core GPU",
                        "display": "14.2-inch Liquid Retina XDR",
                        "memory": "24GB Unified Memory",
                        "storage": "1TB SSD",
                        "rating": 4.8,
                        "reviews": 341
                    }
                ]
            }
        ],
        "recommended_products": [
            {
                "brand": "HP",
                "model": "14 Inch Laptop",
                "features": {
                    "display_size": "14 inches",
                    "storage": "384GB (128GB eMMC + 256GB MSD)",
                    "ram": "16GB",
                    "os": "Windows 11 Pro",
                    "processor": "Intel Dual-Core N4120"
                },
                "price": 349.99,
                "discount": 30.0,
                "rating": 4.5,
                "reviews": 849,
                "recent_purchases": "500+"
            },
            {
                "brand": "HP",
                "model": "14 Laptop",
                "features": {
                    "display_size": "14 inches",
                    "storage": "64 GB",
                    "ram": "4 GB",
                    "os": "Windows 11 Home",
                    "processor": "Intel Celeron N4020"
                },
                "price": 167.98,
                "original_price": 209.99,
                "rating": 4.0,
                "reviews": 2290,
                "recent_purchases": "10K+"
            },
            {
                "brand": "Lenovo",
                "model": "V15 Laptop",
                "features": {
                    "display_size": "15.6\" FHD 1080p",
                    "storage": "1TB PCIe SSD",
                    "ram": "32GB",
                    "os": "Windows 11 Pro",
                    "processor": "Intel Celeron N4500"
                },
                "price": 399.99,
                "rating": 4.4,
                "reviews": 284,
                "recent_purchases": "400+"
            }
        ]
    },
    {
        "products": [
            {
                "name": "16 Inch Gaming Laptop",
                "specs": {
                    "displaySize": "16 inches",
                    "diskSize": "512GB SSD",
                    "ram": "16GB",
                    "operatingSystem": "Windows 11 Pro",
                    "processor": "Intel 12th Gen N95 Processor(up to 3.4GHz)"
                },
                "features": [
                    "Backlit Keyboard",
                    "Fingerprint Unlock",
                    "FHD 1920 * 1200"
                ],
                "rating": {
                    "stars": 4.0,
                    "totalReviews": 651,
                    "monthlyPurchases": "300+"
                },
                "pricing": {
                    "currentPrice": 279.99,
                    "typicalPrice": 339.99,
                    "delivery": {
                        "type": "FREE",
                        "dates": [
                            "Tue, Feb 18",
                            "Sat, Feb 15"
                        ]
                    }
                }
            },
            {
                "name": "HP 17 Laptop",
                "specs": {
                    "displaySize": "17.3 inches",
                    "diskSize": "1TB SSD",
                    "ram": "32GB",
                    "operatingSystem": "Windows 11 Home",
                    "processor": "AMD Ryzen 5 Processor(Beats i7-1165G7, Up to 4.3GHz)"
                },
                "features": [
                    "Webcam",
                    "Numeric Keypad",
                    "Long Battery Life"
                ],
                "rating": {
                    "stars": 4.0,
                    "totalReviews": 22,
                    "monthlyPurchases": "500+"
                },
                "pricing": {
                    "currentPrice": 499.99,
                    "listPrice": 639.0,
                    "delivery": {
                        "type": "FREE",
                        "date": "Tue, Feb 18"
                    }
                }
            }
        ]
    },
    {
        "products": [
            {
                "name": "Dell Latitude Touch 3190 2-in-1 PC",
                "specs": {
                    "processor": "Intel Quad Core up to 2.4Ghz",
                    "ram": "4GB",
                    "storage": "64GB SSD",
                    "display": "11.6inch HD Touch Gorilla Glass LED",
                    "connectivity": "WiFi Cam HDMI",
                    "os": "Windows 10 Pro"
                },
                "condition": "Renewed",
                "rating": {
                    "stars": 3.9,
                    "totalReviews": 327
                },
                "price": 109.99,
                "recentPurchases": "1K+",
                "sustainabilityFeatures": true
            },
            {
                "name": "HP Pavilion Touchscreen Laptop",
                "specs": {
                    "displaySize": "15.6 inches",
                    "storage": "1TB SSD",
                    "ram": "16GB",
                    "processor": "Intel Core up to 4.1GHz",
                    "batteryLife": "Up to 11 Hours",
                    "os": "Windows 11 Home"
                },
                "rating": {
                    "stars": 4.2,
                    "totalReviews": 866
                },
                "price": 392.0,
                "recentPurchases": "1K+",
                "stockStatus": "Only 10 left"
            }
        ]
    },
    {
        "laptops": [
            {
                "brand": "HP",
                "model": "Portable Laptop",
                "rating": {
                    "stars": 4.3,
                    "reviews": 279
                },
                "price": {
                    "current": 197.0,
                    "list": 269.0
                },
                "specs": {
                    "displaySize": "14 inches",
                    "diskSize": "64 GB",
                    "ram": "4 GB",
                    "operatingSystem": "Windows 11 S"
                },
                "features": [
                    "Student and Business",
                    "HD Display",
                    "Intel Quad-Core N4120",
                    "1 Year Office 365",
                    "Webcam",
                    "RJ-45",
                    "HDMI",
                    "Wi-Fi"
                ]
            },
            {
                "brand": "HP",
                "model": "Laptop",
                "rating": {
                    "stars": 4.1,
                    "reviews": 2168
                },
                "price": {
                    "current": 207.99
                },
                "specs": {
                    "displaySize": "14 inches",
                    "diskSize": "64 GB",
                    "ram": "8 GB",
                    "operatingSystem": "Windows 11 Home"
                }
            },
            {
                "brand": "NIMO",
                "model": "15.6 FHD-Laptop",
                "rating": {
                    "stars": 4.7,
                    "reviews": 6
                },
                "price": {
                    "current": 499.99,
                    "typical": 599.99
                },
                "specs": {
                    "ram": "32GB",
                    "storage": "1TB SSD",
                    "processor": "AMD Ryzen 5 6600H"
                },
                "features": [
                    "Gaming Laptop",
                    "100W Type-C",
                    "54Wh Battery",
                    "WiFi 6",
                    "BT5.2",
                    "Backlit Keyboard"
                ]
            }
        ]
    },
    {
        "processorSpeed": [
            "1 to 1.59 GHz",
            "1.60 to 1.79 GHz",
            "1.80 to 1.99 GHz",
            "2.00 to 2.49 GHz",
            "2.50 to 2.99 GHz",
            "3.00 to 3.49 GHz",
            "3.50 to 3.99 GHz",
            "4.0 GHz & Above"
        ],
        "hardDiskDescription": [
            "Emmc",
            "HDD",
            "SSD",
            "SSHD"
        ],
        "connectivityTechnology": [
            "Bluetooth",
            "Ethernet",
            "HDMI",
            "USB",
            "Wi-Fi"
        ],
        "humanInterface": {
            "input": [
                "Touch Bar",
                "Touch Pad",
                "Touchscreen",
                "Touchscreen with Stylus Support"
            ]
        },
        "graphicsType": [
            "Dedicated",
            "Integrated"
        ]
    },
    {
        "services": [
            "Groceries & More Right To Your Door",
            "AmazonGlobal Ship Orders Internationally",
            "Home Services Experienced Pros Happiness Guarantee",
            "Amazon Web Services Scalable Cloud Computing Services",
            "Audible Listen to Books & Original Audio Performances",
            "Box Office Mojo Find Movie Box Office Data",
            "Goodreads Book reviews & recommendations",
            "IMDb Movies, TV & Celebrities",
            "IMDbPro Get Info Entertainment Professionals Need",
            "Kindle Direct Publishing Indie Digital & Print Publishing Made Easy",
            "Amazon Photos Unlimited Photo Storage Free With Prime",
            "Prime Video Direct Video Distribution Made Easy",
            "Shopbop Designer Fashion Brands",
            "Amazon Resale Great Deals on Quality Used Products",
            "Whole Foods Market America's Healthiest Grocery Store",
            "Woot! Deals and Shenanigans",
            "Zappos Shoes & Clothing",
            "Ring Smart Home Security Systems",
            "eero WiFi Stream 4K Video in Every Room",
            "Blink Smart Security for Every Home",
            "Neighbors App Real-Time Crime & Safety Alerts",
            "Amazon Subscription Boxes Top subscription boxes \u2013 right to your door",
            "PillPack Pharmacy Simplified",
            "Amazon Renewed Like-new products you can trust"
        ],
        "legalNotice": {
            "conditionsOfUse": "Conditions of Use",
            "privacyNotice": "Privacy Notice",
            "consumerHealthPrivacy": "Consumer Health Data Privacy Disclosure",
            "adPrivacy": "Your Ads Privacy Choices",
            "copyright": "\u00a9 1996-2025, Amazon.com, Inc. or its affiliates"
        }
    }
]

Claude avec le navigateur Scraping

Le code ci-dessous est légèrement modifié par rapport à l’exemple précédent. Au lieu d’appeler response.text, nous assignons driver.page_source directement à notre variable response.

import re
import requests
from bs4 import BeautifulSoup
import anthropic
import json
from selenium.webdriver import Remote, ChromeOptions
from selenium.webdriver.chromium.remote_connection import ChromiumRemoteConnection

ANTHROPIC_API_KEY = "YOUR-ANTHROPIC-API-KEY"

client = anthropic.Anthropic(
    api_key=ANTHROPIC_API_KEY,
)

def estimate_tokens(text):
    # Rough estimate: 1 token ≈ 4 characters
    return len(text) // 4


def clean_html(html):
    soup = BeautifulSoup(html, "html.parser")
    # Remove script and style elements
    for script_or_style in soup(["script", "style"]):
        script_or_style.decompose()

    # Get the text content only
    return soup.get_text(separator=" ", strip=True)

def pull_json_data(claude_text):
    json_match = re.search(r"```json\n(.*?)\n```", claude_text, re.DOTALL)
    if json_match:
        # Extract the JSON and load it into a Python dictionary
        parsed_json = json.loads(json_match.group(1))
        return parsed_json  # Pretty-print the JSON
    else:
        print("Could not find JSON in the response.")

def chunk_text(text, max_tokens):
    """Split text into sequential chunks based on token limit."""
    chunks = []
    while text:
        # Estimate tokens for the current chunk size
        current_chunk = text[:max_tokens * 4]  # Rough estimate: 1 token ≈ 4 characters
        chunks.append(current_chunk)
        text = text[len(current_chunk):]  # Move to the next chunk
    return chunks

def extract_with_claude(response, token_limit=200000, max_tokens_per_chunk=1024):
    """Process HTML response with Claude by dynamically chunking the text."""
    # Estimate tokens and preprocess if necessary
    
    token_estimate = estimate_tokens(response)
    page_to_parse = response

    # Clean HTML if it exceeds the token limit
    if token_estimate > token_limit:
        page_to_parse = clean_html(page_to_parse)

    # Chunk the cleaned text
    chunks = chunk_text(page_to_parse, max_tokens_per_chunk)
    print(f"Chunks to process: {len(chunks)}")

    # Process each chunk
    results = []
    for i, chunk in enumerate(chunks):
        print(f"Processing chunk {i + 1}/{len(chunks)}...")
        message = client.messages.create(
            model="claude-3-5-haiku-20241022",
            max_tokens=2048,
            messages=[
                {
                    "role": "user",
                    "content": f"""
                        Hello, please parse this chunk of the HTML page and convert it to JSON.
                        Make sure to strip newlines, remove escape characters, and whitespace:
                        {chunk}
                    """
                }
            ]
        )
        text = message.to_dict()["content"][0]["text"]
        try:
            parsed_json = pull_json_data(text)  # Extract JSON
            results.append(parsed_json)
        except Exception as e:
            print(f"Error processing chunk {i + 1}: {e}")
    return results




if __name__ == "__main__":
    TARGET_URL = "https://www.walmart.com/search?q=laptops"

    AUTH = "brd-customer-<YOUR-USERNAME>-zone-<YOUR-ZONE>:<YOUR-PASSWORD>"
    SBR_WEBDRIVER = f"https://{AUTH}@brd.superproxy.io:9515"

    sbr_connection = ChromiumRemoteConnection(SBR_WEBDRIVER, "goog", "chrome")
    response = None

    success = False

    while not success:
        try:
            with Remote(sbr_connection, options=ChromeOptions()) as driver:
                driver.get(TARGET_URL)
                response = driver.page_source
                success = True
        except Exception as e:
            print(f"Failed to get the page: {e}")

    
    json_data = extract_with_claude(response)
    
    with open("scraping-browser-output.json", "w") as file:
        try:
            json.dump(json_data, file, indent=4)
        except:
            print("Failed to save JSON data")

Voici des ordinateurs portables de Walmart extraits par Claude.

[
    {
        "laptops": [
            {
                "brand": "Acer",
                "model": "Chromebook 315",
                "screen_size": "15.6 inch",
                "processor": "Intel Processor N4500",
                "ram": "4GB",
                "storage": "64GB eMMC",
                "color": "Pure Silver/Moonstone Purple",
                "os": "ChromeOS",
                "price": {
                    "current": 139.0,
                    "original": 179.0
                },
                "reviews": {
                    "count": 6370,
                    "rating": 4.4
                }
            },
            {
                "brand": "ASUS",
                "model": "Chromebook CM30",
                "screen_size": "10.5 inch",
                "type": "2-in-1 Touch Tablet",
                "processor": "MediaTek Kompanio 520",
                "ram": "8GB",
                "storage": "128GB eMMC",
                "color": "Fog Silver",
                "extras": "Stylus Included",
                "price": {
                    "current": 299.0
                },
                "reviews": {
                    "count": 265,
                    "rating": 4.4
                }
            },
            {
                "brand": "ASUS",
                "model": "Chromebook Plus CX34",
                "screen_size": "14 inch",
                "type": "Touch Laptop",
                "processor": "Intel Core i3-1215U",
                "ram": "8GB",
                "storage": "128GB UFS",
                "color": "Gray",
                "features": [
                    "Google AI"
                ],
                "price": {
                    "current": 329.0,
                    "original": 399.0
                },
                "reviews": {
                    "count": 111,
                    "rating": 4.6
                }
            },
            {
                "brand": "Naclud",
                "screen_size": "15.6 inch",
                "os": "Windows 11",
                "ram": "36GB DDR4",
                "storage": "128GB + 1024GB ROM",
                "processor": "4 Core Celeron N5095",
                "extras": [
                    "1yr Free Office 365",
                    "Support 5TB Expansion",
                    "Copilot"
                ],
                "price": {
                    "current": 399.19,
                    "original": 1399.99,
                    "alternative_from": 329.99
                },
                "reviews": {
                    "count": 118,
                    "rating": 3.8
                }
            },
            {
                "brand": "RNRUO",
                "screen_size": "14.1 inch",
                "os": "Windows 11 Pro",
                "type": "Business Laptop",
                "ram": "8GB",
                "storage": "256GB SSD",
                "processor": "2.64 GHz Intel Pentium J3710",
                "resolution": "1920x1080 FHD",
                "connectivity": [
                    "WiFi 5",
                    "BT5.0"
                ],
                "color": "Gray",
                "price": {
                    "current": 180.89,
                    "original": 498.0
                }
            }
        ]
    },
    {
        "laptops": [
            {
                "name": "Apple MacBook Air 13.3 inch Laptop",
                "color": "Silver",
                "chip": "M1 Chip",
                "features": [
                    "Built for Apple Intelligence"
                ],
                "specs": {
                    "ram": "8GB",
                    "storage": "256GB"
                },
                "pricing": {
                    "currentPrice": 629.0,
                    "originalPrice": 699.0
                },
                "reviews": {
                    "count": 5082,
                    "rating": 4.7
                },
                "shipping": {
                    "type": "Free shipping",
                    "arrivalTime": "3+ days"
                }
            },
            {
                "name": "HP 14 inch Windows Laptop",
                "color": "Silver",
                "processor": "Intel Celeron N4120",
                "specs": {
                    "ram": "4GB",
                    "storage": "64GB eMMC"
                },
                "extras": [
                    "12-mo. Microsoft 365 Included"
                ],
                "pricing": {
                    "currentPrice": 149.0,
                    "originalPrice": 249.0
                },
                "reviews": {
                    "count": 1061,
                    "rating": 4.4
                },
                "shipping": {
                    "type": "Free shipping",
                    "arrivalTime": "2 days"
                }
            }
        ]
    },
    [
        {
            "currentPrice": 449.99,
            "originalPrice": 549.0,
            "name": "HP Pavilion 16 inch Windows Laptop AMD Ryzen 5-8540U AI PC 8GB RAM 512GB SSD Meteor Silver",
            "rating": 4.4,
            "reviewCount": 67,
            "shipping": "Free shipping, arrives in 3+ days",
            "stockStatus": "Only 2 left"
        },
        {
            "currentPrice": 194.95,
            "originalPrice": 229.0,
            "name": "HP Stream 14 inch Windows Laptop Intel Processor N4120 4GB RAM 64GB eMMC Pink (12-mo. Microsoft 365 included)",
            "rating": 4.2,
            "reviewCount": 16026,
            "shipping": "Save with Free shipping, arrives in 2 days",
            "stockStatus": "Only 1 left"
        },
        {
            "currentPrice": 399.19,
            "originalPrice": 1399.99,
            "name": "Naclud 15.6\" Windows 11 Laptop 36GB DDR4 128+1024GB ROM Computer, 4 Core Celeron N5095, 1yr Free Office 365 Subscription, Support 5TB Expansion, Copilot",
            "rating": 3.8,
            "reviewCount": 118,
            "shipping": "Save with Free shipping, arrives in 2 days",
            "stockStatus": "Available"
        },
        {
            "currentPrice": 139.0,
            "originalPrice": 199.99,
            "name": "Acer Chromebook 315 15.6 inch Laptop Intel Processor N4500 4GB RAM 64GB eMMC Moonstone Purple",
            "rating": 4.4,
            "reviewCount": 6370,
            "shipping": "Save with Free pickup today, Delivery today, Free shipping, arrives tomorrow",
            "stockStatus": "Only 2 left"
        },
        {
            "currentPrice": 265.79,
            "originalPrice": 599.0,
            "name": "SANPTENT 15.6 inch 1080p FHD Laptop Computer 16GB RAM 512GB SSD with 4 Core Intel Celeron N5095, FingerPrint, Backlit Keyboard, Windows 11 Pro",
            "rating": 4.0,
            "reviewCount": 359,
            "shipping": "Save with Free shipping, arrives in 2 days",
            "stockStatus": "Available"
        },
        {
            "currentPrice": 94.0,
            "originalPrice": 139.99,
            "name": "Restored HP Chromebook 2024 OS 11.6-inch Intel Celeron 1.6GHz 4GB RAM 16GB SSD Bundle: Wireless Mouse, Bluetooth/Wireless Airbuds By 2 Day Express (Refurbished)",
            "rating": 3.9,
            "reviewCount": 547,
            "shipping": "Free shipping, arrives in 2 days",
            "stockStatus": "Available"
        },
        {
            "currentPrice": 792.99,
            "originalPrice": 999.99,
            "name": "DELL Inspiron 3520 15.6\" Touchscreen i7 Laptop, Intel Core i7-1255U, 32GB RAM, 1TB SSD, Numeric Keypad, Webcam, SD Card Reader, HDMI, Wi-Fi, Windows 11 Pro",
            "rating": 1.0,
            "reviewCount": 1,
            "shipping": "Save with Free shipping, arrives in 2 days",
            "stockStatus": "Only 6 left"
        },
        {
            "currentPrice": 279.09,
            "originalPrice": 329.0,
            "name": "Laptop 15.6 FHD 16GB 512GB Intel Quad-Core 12th Alder Lake N97 with Windows 11 Pro",
            "rating": 4.6,
            "reviewCount": 1698,
            "shipping": "Free shipping, arrives in 3+ days",
            "stockStatus": "Available"
        },
        {
            "currentPrice": 279.99,
            "originalPrice": null,
            "name": "HP 14\" HD Laptop for Students and Business, Intel Quad-Core Processor, 4GB RAM, 64GB eMMC+256GB Micro SD, Long Battery Life, UHD Graphics, Webcam, Windows 11 Home in S Mode, Snowflake White",
            "rating": 4.3,
            "reviewCount": 350,
            "shipping": "Free shipping, arrives in 3+ days",
            "stockStatus": "Available"
        },
        {
            "currentPrice": 244.9,
            "originalPrice": 379.0,
            "name": "HP 15.6 inch Windows Laptop Intel Processor N200 4GB RAM 128GB UFS Scarlet Red (12-mo. Microsoft 365 included)",
            "rating": null,
            "reviewCount": null,
            "shipping": null,
            "stockStatus": null
        }
    ],
    {
        "laptops": [
            {
                "brand": "HP",
                "model": "15.6 inch Windows Laptop",
                "processor": "Intel Processor N200",
                "ram": "4GB",
                "storage": "128GB UFS",
                "color": "Scarlet Red",
                "price": {
                    "options": {
                        "min": 244.9,
                        "max": 249.0
                    }
                },
                "reviews": {
                    "count": 6192,
                    "rating": 4.3
                },
                "extras": "12-mo. Microsoft 365 included",
                "shipping": "Free shipping, arrives in 3+ days"
            },
            {
                "brand": "HP",
                "model": "15.6 inch Windows Laptop",
                "processor": "Intel Core i3-N305",
                "ram": "8GB",
                "storage": "256GB SSD",
                "color": "Natural Silver",
                "price": {
                    "current": 304.98,
                    "options": {
                        "min": 304.98,
                        "max": 329.0
                    }
                },
                "reviews": {
                    "count": 2001,
                    "rating": 4.5
                },
                "shipping": "Free shipping, arrives in 2 days"
            }
        ]
    },
    {
        "laptops": [
            {
                "name": "HP 14 inch x360 FHD Touch Chromebook Laptop",
                "specs": {
                    "processor": "Intel Processor N100",
                    "ram": "4GB",
                    "storage": "64GB eMMC",
                    "color": "Sky Blue"
                },
                "price": {
                    "current": 269.0,
                    "original": null
                },
                "reviews": {
                    "count": 1437,
                    "rating": 4.5
                },
                "shipping": "Free shipping, arrives in 3+ days"
            },
            {
                "name": "SANPTENT 16 inch Windows 11 Pro Laptop",
                "specs": {
                    "processor": "4 Core Intel Alder Lake N95",
                    "ram": "16GB",
                    "storage": "512GB SSD",
                    "screen": "1920x1200 FHD IPS"
                },
                "price": {
                    "current": 279.38,
                    "original": 699.0
                },
                "reviews": {
                    "count": 352,
                    "rating": 3.9
                },
                "shipping": "Save with Free shipping, arrives in 2 days"
            }
        ]
    },
    {
        "laptops": [
            {
                "name": "ASUS Vivobook Go 15.6 inch Windows Laptop",
                "specs": {
                    "processor": "Intel Core i3-N305",
                    "ram": "8GB",
                    "storage": "256GB UFS",
                    "color": "Black"
                },
                "price": {
                    "current": 282.0,
                    "original": null
                },
                "reviews": {
                    "count": 330,
                    "rating": 4.4
                },
                "shipping": "Free shipping, arrives in 2 days"
            },
            {
                "name": "Latest 16\" Purple Laptop",
                "specs": {
                    "processor": "12th Gen Alder Lake N95 CPU",
                    "ram": "12G LPDDR5",
                    "storage": "1T NVMe SSD",
                    "os": "Win 11 Pro/Office 2019"
                },
                "price": {
                    "current": 377.99,
                    "original": null,
                    "other_options_from": 369.99
                },
                "reviews": {
                    "count": 7,
                    "rating": 4.4
                },
                "shipping": "Free shipping, arrives in 2 days"
            }
        ]
    },
    {
        "products": [
            "hp laptop",
            "macbook",
            "gaming laptop",
            "printer laptop",
            "touchscreen",
            "wireless mouse",
            "ipad",
            "chromebook",
            "mouse"
        ],
        "pagination": {
            "current": [
                1,
                2,
                3
            ],
            "total": 25
        },
        "footer_links": [
            "Departments",
            "Store Directory",
            "Careers",
            "Our Company",
            "Sell on Walmart.com",
            "Help",
            "Product Recalls",
            "Accessibility",
            "Tax Exempt Program",
            "Get the Walmart App",
            "Sign-up for Email",
            "Safety Data Sheet",
            "Terms of Use",
            "Privacy & Security",
            "California Supply Chain Act",
            "Your Privacy Choices",
            "Notice at Collection",
            "AdChoices",
            "Consumer Health Data Privacy Notices",
            "Brand Shop Directory",
            "Pharmacy",
            "Walmart Business"
        ],
        "copyright": "\u00a9 2025 Walmart. All Rights Reserved."
    }
]

Conclusion

En permettant à Claude d’analyser les pages avec l’infrastructure de Bright Data, nous pouvons réduire considérablement le temps passé à écrire des analyseurs et à gérer les blocages et les interdictions d’IP. La seule chose dont vous devez vous préoccuper est la page. Une fois que vous avez la page, vous pouvez la confier à Claude pour qu’il la complète. Votre scraper global peut prendre quelques minutes de plus pour fonctionner, mais ce n’est rien comparé aux heures que nous passons à écrire nos propres analyseurs.

Vous voulez essayer les produits de Bright Data ? Inscrivez-vous maintenant et commencez votre essai gratuit !

Aucune carte de crédit requise